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Dissipation field asymmetry and intermittency in fully developed turbulence
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Experimental study of high Reynolds number turbulence provides additional evidence that asymmetry of
turbulence is related to the intermittency. The refined similarity hypottiBS$), on the other hand, connects
the intermittency of the longitudinal velocity increments with that of the dissipation field, implying in particu-
lar that the dissipation field should be asymmetric as well. The asymmetry of the latter is indeed found in these
experiments. In addition, the study of the dissipation field asymmetry provides us with quantitative estimations
of the deviations from the RSH.

PACS numbes): 47.27.Ak, 47.27.Jv

[. INTRODUCTION tency, as summarized [B]. In spite of that, the ramp model
still remains only empirical. The main issue is to understand
Self-similar properties of turbulence, suggested by Kol-what dynamical processes are behind this connection be-
mogorov(K41) [1], have been intensively studied for a long tween the asymmetry and intermittency. Still unable to solve
time. The so-called K41 theory suggests that the probabilitghis problem at the present stageiggesting only some sim-
distribution (PDF of the longitudinal velocity increments plified ideas in Sec. | we can approach it by addressing
Av for different distances should be self-similar: that is, the question: How exactly is the asymmetry of turbulence
the conditional probabilityp(u|r), u=Av/{((A,v)%Y2 is  related to the intermittency?
independent of. Basically, this has proved to be the case, To be more specific, we subdivide this issue into two.
although some deviations have been found in high ordeFirst, the Kolmogorov law(1) implies that the velocity in-
structure functionmoments ofA,v), which are traditionally  crements possess asymmetric statistics, whereas the intermit-
attributed to the existence of intermittency. A theory incor-tency is really conspicuous only for the dissipation field. On
porating the intermittency, the refined similarity hypothesisthe other hand, the velocity increments are directly related to
(RSH) [2], links the statistics ofA,v with that of the dissi- the dissipation field via the RSH. Thus, the first goal of this
pation fielde, , meaning that now the distributiop(V|r), study is to find out if the dissipation field is asymmetric as
where V=Av/(re,)*?, is self-similar (independent ofr)  well.
(see alsd3]). In spite of quite good experimental validation ~ Second, we might expect that the asymmetry of the PDF
of RSH[4], [5], there are some deviations from the theory. of the velocity increments a priori, i.e., following from the
One of the issues relevant to these deviations is asymmelolmogorov law, should be supported by a vast majority of
ric statistics. The asymmetry by itself follows from the Kol- events, that is, by the PDF core. Moreover, the Kolmogorov
mogorov law[6], law is the only moment of the velocity incrementsov
whose scaling is not subject to the intermittency corrections.
((A)3)y=—2&(e)r, (1)  Thus, it might seem that the law is unrelated to the intermit-
tency. However, it has long been observed thatAhe PDF
which simply manifests an energy transfer to small diffusivecore is not really asymmetric, suggesting that the main asym-
scales in fully developed turbulend&]. It was suggested metry comes from the tailgl2]. Direct comparison of the
recently that, in addition, the asymmetry is related to theright and left PDF wingd11] supports this observation. In
intermittency[8]. This hypothesis, called the ramp model, this paper we study what part of the Kolmogorov law is
has so far been validated experimentqy8—11], although  formed by the core of the PDF, and what part of it is formed
there still remain some fundamental questions unansweretly the tails that are responsible for the intermittency\ps .
and even not addressed yet. In any case, if confirmed, this We will further refer to a PDF with tails as “singular.”
hypothesis would provide us with quite a useful tool for This paper is thus devoted to the experimental study of the
studying intermittency. The point here is that traditionally dissipation field singularities, which are related to the singu-
the intermittency has been studied through the high ordelarities of theA,v PDF (through the RSK and manifested in
structure functions: the higher the better. Normally, howeverthe third moment ofA,v (the Kolmogorov law through
the high order moments are not supported by good statisticasymmetry.
The asymmetry, on the contrary, is manifested already in the Section Il is introductory as well, giving some basic in-
low order moments. To begin with, the Kolmogorov [&%)  formation about asymmetry aspects of turbulence, and, in
corresponds to the third moment. Experimental studies reparticular, about the ramp model. It is shown in Sec. Ill that
veal that the asymmetry is observed in even lower ordethe intermittency of the dissipation field is asymmetric. The
momentg 9]. direct connection between asymmetry, dictated by the Kol-
One may say that the ramp model is consistent with exmogorov law, and the tail parts of the velocity increment
perimental data. Moreover, it has proved to be useful in inPDF is studied in Sec. IV. Section V is devoted to studying
terpreting a large variety of data, and in studying intermit-the connection between these two fields—the dissipation
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field and the velocity increments—with emphasis on therange of distances is quite close to E®), illustrating self-
asymmetry of statistics. The main conclusions are given irconsistency of the measurements. The real slopg,(f),

Sec. VI obtained by fitting, is slightly steeper, consistent with the
well known observation that the exponent is somewhat big-
Il. DESCRIPTION OF THE METHOD AND NOTATIONS ger than 2/3: namely, the exponefy=0.72+0.01, quite

) , close to{,=0.71 obtained if13].
We used 16x10° points of atmospheric data from Yale — The |ocal rate of dissipatios, and correspondingly the

University, with an estimated Taylor microscale Reynoldsgjssination fields, , are also understood as one dimensional,
number of 9540. The data are treated in the spirit of the

Taylor hypothesis, that is, the time series is treated as a one- 1 [x+r2
dimensional cut of the procesfor more detail, se¢l10,5]). e=15v(dywy)?, 8,=—f

We study the statistics of the velocity incremeit® and
of the dissipation fielce, for different distances, from/#
=53.33 tor/ =13 333.3(in terms of the Kolmogorov scale
7). We denote structure functions

e(x)dx, 3)
X—r/2

which is sometimes called pseudodissipation. It was reiter-
ated recently that pseudodissipation provides useful informa-
tion, especially because it is measured for very high Rey-
nolds number$14].

Sp=((Arv)"), According to the refined similarity hypothegig],

and generalized structure functions

— 1/3
Sq(r)=(|Av]%. A =1CpV(em) ", (4)

whereV is a random function statistically independentsof

It can be seen from Fig.(8) thatS5(r), i.e., the Kolmogorov .
law (1), can been fitted for a somewhat shorter scale rangeThe prefactor in Eq(4) ensures that the second moment

from r/»=53.33 tor/ »=5333.33, that is, for two decades. c’orresponc_is to the experimen_tal vaI_L@, provided (V)
The exponent is 0.9920.018, quite close to the unity re- ~1. We will use Eq.(4) in the dimensionless form,
quired for the Kolmogorov lawif we remove the right end
point taken for the fitting, then the exponent deviates slightly
more from unity. This range of distances, where the Kol-
mogorov law fits satisfactorily, we will consider as ‘“stan-
dard,” and all other measurements were provided in this 13
range. In particular, we calculatéel) from this experimental U= Aw y= (i)
plot, as follows from Eq(1). This value of(¢) can be sub- VCy((e)r) 13’ (e)
stituted into the second moment,

u=Vy, ®)

where

Thus,u is defined in such a way thau?) should be close to
Sz(r)=C2((s>r)2’3, 2) unity. This is indeed the case, as follows from Figa)1lor
when recovering the second moments from experimental
with Kolmogorov constan€,=2=+0.4; see, e.g[3]. Itcan  PDF’s, i.e., calculatingfu?p(ulr)du from experimental
be seen from Fig. (B that the experimentab,(r) in our  p(ulr).
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Th_us, ac_cording to the RSN/ is a nonsingl_JIar universal Sgc)(r)=C§’2<s>r<u3)c, ﬂc)(r)=C§/2<s)r<V3>c, (8)
function, with standard deviation close to unity. Xsandy
are statistically independent, apds non-negative, it follows  sq that, by definitior(4), SE=7)(r)=84(r), and, according
thafr(V):O. On the other hand, the third moment\éfis {5 the RSH,P¢~)(r)=84(r). Analogously,
defined by the é(/zolmogorov lawl), and by definition(4),
(V3)=—(4/5)/C5”. These two requirementgV)=0 and
(V3)<0, suggest thap(—V)>p(V) for large|V|, and, in SP(r)=C3¥eyr(ud), PU(r)=C3%e)r(V3), (9
order to balance this to make the first moment vangsh, t=0) 1=0) )
(—V)<p(V) for small|V|. However, as the corresponding SO t_hat8(3. (f)=_7’f (r)=38s(r). As mentioned above,
PDF is nonsingular, the “large” values d¥/| are in fact the intermittency is irrelevant for this moment, and therefore
moderate, say, &|V|<3. In other words, both asymmetries On€ would expect that the main contribution to the moment
mentioned above should be inside the PDF core. Fig(se 1 Would be given by the majority of events, that is, by the PDF
depicts this “ideal” PDF forV, denoted byP(V). Itis con-  core. In other words, qualitatively, bots® (r) and S§(r)
structed as a sum of two Gaussian distributions with standarére expected to behave lik@9(r) and 7(r). So one of
deviations close to unitfto avoid any tails, because the the tests of the RSH would be to compare the experimental
function should be nonsingularThis function thus satisfies S$(r) and the S{(r) with “ideal” behavior given by
PO(r) and PO(r).
According to the RSHy andV are statistically indepen-
f P(V)dV=1, f P(V)VdV=0, dent; in particulary should not “know” about the sign of/
(and, therefore, it should be uncorrelated with the sigo)of
We denote by the dissipation field corresponding to .
We will deal with conditional probabilitiesp(y™,+1]r)
=p(y,u/|ul|r), so that only p(y*,1r)=p(y*|r) and
p(y~,—1|r)=p(y |r) do not vanish, whilep(y™,—1]r)
The function does not contain tails: its deviation from Gauss=p(y~,1/r)=0. These PDF’s are thus normalized to satisfy
ian form at large values is insignificant. However, at the
core, it has the needed asymmet®(—V)>P(V) for 1 " "
<.|V|<2, say, andD(—V)<7D(V), for_|v|<1. This function f p(y+|r)dy++f p(y~|ndy =1.
will be used to compare with experimental PDF’s. 0 0
As to the PDF fow, it is expected both from K41 and the o
RSH that the asymmetry will be qualitatively the same as forStatistical independence betwegnand V means that the
P(V). The only difference is that, because of the presence dfDF’s are symmetricp(y " [r)=p(y"[r), and therefore
a singular procesgin Eq. (5), the velocity incrementa are
singular as well, i.e., there are tailspgu|r). However, as/ % o
“does not know” about the sign ofi, being always non- J p(y+|r)dy+=f p(y~[rdy =3.
negative, this asymmetry should not be noticeable in the 0 0
tails. In other words, the asymmetry should be manifeste . . . . o
mainly in the cores of the PDyF, rathzz-/r than in the tails. This(iln pa[“";‘,'gar' |11;w1/=2(9xv(x) is Gaussian, then the distribution
difference(i.e., that the proces¥ is nonsingular, whilau is for y=2"/(21%)"* has the form
singula)y is expected to completely disappear for the third

4 1
fP(V)vzdv:l, fP(V)v3dv:———3r2.
5C5

momentS;(r). Indeed, according to Ed4), the intermit- 12 3,
tency is irrelevant for this moment, corresponding to the G,(ylr)= 2\/2—87" 2, (10
ar

Kolmogorov law. In other words, this moment does not van-
ish only due to asymmetry. Thus, an important test for the | . .
RSH is to check if this is indeed the case. In order to do thisWhICh differs from Eq.(23) of [5] by a factor 1/2, because

we will consider cumulative moments, the normalization is now d'ffe.ref?t- . .
Another way to study the dissipation asymmetry is to con-

. . sider two sets,
<u3>c=f u®p(ulr)du, <v3>c=f V3P(V)dV, (6)

axvx)

1
si(X)ZE(s(X)is(X) 90,

11
and what we may call tail moments,

It is clear that these two sets do not intersect with each other,

(UB),= f_tu3p(u|r)du+ fmu3p(u|r)du and therefore it is possible to introduce separate measures,
e ¢
(7 . X+r/2
,u;:f e*(x)dx, (12
X—r/2

s _ [s “\3
(V3), J VEP(V)dV+ | VBP(V)dV.
—x t

cf. Eq. (3). In particular, we will study moments of these
We denote measures, defining the generalized dimensions as follows:
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— = (1-DY)(q- lll. ASYMMETRY OF THE DISSIPATION FIELD
<(Mr—)q>~|—§q:r (1=Dg)a=1), (13

A. Asymmetry of p(y*|r)

where .
The results of the measurements can be summarized as
. follows. First, all the measuregt- distributions are singular,
F:'“_r being well aboveG,, [Eq. (10)]. Second, the strength of the
;

r’ singularity of both= dissipation fields is less than that of

_ _ , _A,v: the PDF’s fory™ are noticeable below those for"
The experimental studies of the PDF’s show some deV|a-:(|u| +u)/2, for values, say, greater than 2. In addition, for

tion_s from t.he “ideal”_ behavior described abovg. Eigu(e)l large distances, there is always a cutoff value for yfie
depicts t.yp|cal experimental PDF’s. _These deviations can baistributions, e.g., there are no events with>6, say, while
summarized as follows(1) There is asymmetry of the oo are larger values of, up to the measured limit of 8
p(u[r), noticeable in the tails; namely, the left wing is defi- ( [5)) These trends can also be seen from Fig. 2, illustrat-
nitely higher than the rightl 1]. (2) The PDF forV has tails g these distributions for four distances. Third, for values,
as well, the right-hand wing reaching valuespgli[r), and g5y greater than 2, the PDF's fgr are typically higher
the left-hand wing is still above a Gaussian distribution, andy 5, those fory* (some examples are given in Fig), 2n
typically aboveP(V), although not muchS]. (3) The right-  5ccordance with the ramp modelee the end of Sec.)ll
hand wings ofp(V|r) are higher than the left-hand wings, — Note, however, that this excess is manifested only as a
€., trle asymmetry op(V|r) is opposite to that of the eng: in contrast to the® asymmetry, the latter being really
ideal” PDF for V, and opposite to the asymmetry of g stematic, like a law. Indeedy(u™,|r)>p(u™,|r) for u
p(u[r). This observation is supported by dlrectam_easuremeng 2, and for all distanceld 0]. Nevertheless, this trend is also
of odd moments. Thus, as was shown[%}, (V*) is often  ,pyious, and that can be seen from the behavior of the fourth
ppsnwe. Figure (d) |II'ustrates this result once agaln..The moment((y*)%) depicted in Fig. &). It definitely shows
difference between this plot and corresponding plof$iris 4+ ((y)H>((y")H, for all distances. Returning to the
that the plots ir{5] depict different data samples, normalized ppE i Fig. 2: an occasional prevalence pfy|r) over
separately, so they can be considered as separate exp% y~|r) for largey™ can be attributed to the fact that we are
ments, whereas all present measurements correspond t0 &5ing with the very end of the distribution function, that is,
processing of all available data. , with very rare events, subject to strong fluctuatiénst so
Finally, we summarize what the ramp model predicts. Inv_vith the u™ distributions; as seen from Fig. 2, the studied
essence, the ramp model suggests that the asymmelry 8o are far from the end of the distributiariEherefore, it
manifested not so much at the cores of the PDF's but rathgf, a5 sense to study the cores of these distributions, where
at thg tails, i.e., the asymmetry is by itself S'”gu'af'.a”d tr,“%tatistics are good. According to the ramp model, the asym-
it is directly related to the intermittency. More specifically, in metry at small values is opposite to that at large ones, that is,
Yor these valuesp(y*|r)>p(y~|r) [cf. Eq. (17)]. The ex-
perimental PDF is indeed in agreement with this expectation,
as seen from the insets to Fig. 2. The insets depict some
selected distances; it is noteworthy, however, that all the

Let a*=(|a|]*xa)/2, wherea is some random process. If
applicable for this process, the ramp model suggests that

((@a)H>(@"H9 for q>1, PDF’s from the data we analyzed look this way(y*|r)
(14  >p(y~|r) fory=<1.
(@)% <((a®)% for gq<1. In order to show it quantitatively, we measured the rela-

tive number of events witly<1 (a sort of box counting
In addition, if the moments o&* possess any scaling, namely,N== [5p(y=|r)dy*. Figure 3b) shows that indeed
<at>q~r§§, as in Eq.(13), then N*>N", for all the studied data.
Another presentation of this asymmetry is provided by the
zeroth moment. According to the definition given in Sec. I,

€q>€&q for g>1, the zeroth moment simply corresponds to the box counting
(15  for the distributionsy~, or, equivalently, foru™ distribu-
§§<§§ for q<1, tions. If the process were symmetric, then
which, according to Eq(13), corresponds to p(y"™>0|r)=p(y >0[r)=3%,

(16) that is, the probability ofi being positive is the same as the
probability of u being negative, and equal to 1{&e ex-

In particular, for the velocity increments, th@egative cluded valuesu=0 from the datg, considering them spuri-

skewness is defined mostly by the tails of the velocity incre-0uS; See Sec. IV A belowAccording to the ramp model, we

ment PDF, and the core possesses opposite symmetry, i.e€XPect that the negative parts of thedistribution will oc-
cupy less space than the positive pdase Eq.(14) for g

=0]. Figure 3c) shows that this is indeed the case. By defi-

nition, p(y*>0|r)+p(y >0|r)=1, that is, if the negative
17 distribution occupie$'s fraction of the experimental interval
p(u*|r)>p(u~|r) for the core. (f<1/2), then the positive part occupies the rest, i.e., (1

- +
Dy<Dg .

p(uf|r)<p(u~|r) for large u™,
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FIG. 2. Comparison of the
PDF's for the velocity increments
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—f)'s fraction. Therefore, if there is some scaling for f(r):aorlfDO, (18

f,f(r)=ayr¢°, then the negative part may be considered as

singular, and the corresponding Kolmogorov capacity can b&hich is a particular case of E¢L3).

estimated. In that case, the positive part is trivially related to It is apparent from Fig. @) that the fractionf(r) is in-
the negative part, namely, it is 1—aor<®, which is not a deed systematically increasing with growingas suggested
power law, and therefore not interesting. The Kolmogorovby expression18), providedDy<1. The fitting of the box

capacityD is defined through the formula counting of this distribution to a straight line results iy
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=0.9983+0.0002. As the generalized dimensions are dedefined in Eq(11). Figure 4a) illustrates some of the stud-
creasing monotonically with growing [15], a nontrivial  ied moments(x, )%). Itis clear that (u, )% >((x,)9), in
Kolmogorov capacityD, <1 means that all the dimensions accordance with the ramp modslee Eq.(14)].

are nontrivial,D, <1. Recall that the statistics for the zeroth ~ Panel(b) of Fig. 4 confirms Eq(15), although the two
moment are as good as possible. In spite of the fact that theurves are quite close to each other. Direct calculation of the
deviation from unity is tiny, & D,=0.0017, it is still con- ~generalized dimensions, defined in E#3) [panels(c) and
siderably larger than the error, 0.0002. In addition, the non{d)] shows that Eq(16) is satisfied as well. As seen from

trivial Kolmogorov capacity has already been obserid, panel(d), the error bars do not overlap for smallin spite of
although for substantially smaller distances, for which theth® fact that the difference betweenand — dimensions is
small. The statistic here is reliable, because the moments are

slope is steeper and therefore the Kolmogorov capacity de2
viates more strongly from unity. It is hard to compare theseofqéovc\’a?]“ile;:nf(irzf%‘5’ thael'tiflrré())r'?asrgt'g?e?jvgcla':ﬁé Ssqs'[hat
two measurements, though. They correspond to two differerft : INequalityL) 1S sausfi @

) . . only as a trend. We should keep in mind, however, that these
processegpipe turbulence if10] and atmospheric turbu-

: ..moments are in effect of relatively high orders, correspond-
lence in the present stugyand because the measurements 'ning via the RSH to velocity increments of ordgr7.5 or
[10] correspond to a range between the dissipation and i”eﬁigher. '
tial ranges, whereas all the distances here are well inside the
inertial range. Nevertheless, in view of the small deviation of
the Kolmogorov capacity from unity in our “standard”

range of distances, there is no guarantee that some systematic A. The PDF for u: problem of zero values

errors are not involveq, making it nontrivial. At thg same According to Eq.(17), the PDF core fou is expected to
time, the asymmetry itself, i.e., thd(r) <1/2, consistent 455655 an asymmetry opposite to that at the tails. In spite of
with Eq. (14), is clearly seen from Fig.(8). good statistics at the core this asymmetry was not really ob-
served. Usually, the PDF has a distinctive peak at zero,
which might obscure the asymmetry.

The most straightforward approach to studying the asym- The question of the behavior of the PDFwt0 is im-
metry and related intermittency is to analyze the two séts portant by itself. Indeed, the PDF may have &unction at

IV. ASYMMETRY OF THE PDF CORE

B. Asymmetry of the U measures
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the origin, i.e.,p(u|r)~&(u), which would mean a non- mental probabilities on the right-hand side of Ef9). The

trivial Kolmogorov capacitysee, e.g.[16]). The experimen-

histogramsH (u|r) are constructed for the intervat 8<u
<38, with bin sizeA=0.1. For all bins, we havel(mA<u

<(m+1)A|r)>0, where
H(mA|r)=0, as it should

m=0,+1,+=2,..., whereas
for any continuous distribution.

resulting probability is called “digital” and depicted in Fig.
tal PDF’s seem to suggest that this is indeed the case. THe{a). The figure also compares this probability with direct
measurements of the number of zeros. The real probability
p(0]r) is always below the digital, and therefore the mea-
sured numbersi(0,|r) are unreliable.

These numbers, however, give a considerable contribution

The only exception i$1(0,|r), which always contains a con- to the histogram at-0.1<u<0.1. If we remove this contri-
siderable amount of elemen(se., H(0,|r)>1). These zeros bution, thus considering it spurious, the histograms change.
could be simply spurious, though. Indeed, the raw data ar&igures %c)—(d) show the new PDF’s and compare them
given in (four digit) integers, so that the differences betweenwith the old. One can clearly see the “needed” asymmetry
two data pointgcalculated in constructing the structure func- of the cores, and that the spurioliscluding the zerothPDF
tions) have a finite probability of being zero. Denoting by confuses the asymmetry, looking much more symmetric than
p(n;) the probability that the data assume the vaiugthen it should. Thus, we consider the zeros appearing at the origin
the probability of zero will read of the PDF foru as spurious. Another independent confirma-
tion of such an approach is that the Kolmogorov capacity of
the u process is always observed as triviake, e.g9.[17]),
unlike the u™ processes, which, as argued in Sec. Il A,
might possess a nontrivial Kolmogorov capacity.

H(u=0lr)

p(Or)=——g——=2 P(n)p(ni[ni.r),  (19)

whereN is the number of events, aq{n;|n; ,r) is the con-
ditional probability that the second data point separated by
distancer assumes the value; provided that the first data It can be expected that this moment is of low order, con-
point assumes the valug . For r—o the two events are cerning essentially the core of the PDF, while the tails are
statistically independent, meaning thq](ni|nj ,[— ) not supposed to give a substantial contribution. This is defi-
=p(n;). If, e.g., the distribution is homogeneoug(n;) nitely true for the generalized structure functi®s(r). How-
=1/n, n being the number of available numbers, thenever, the structure functiofs(r) might behave differently,
p(0jr—=)=1/n as well. In practice, this probability is not because it does not vanish only due to asymmetry, and the
that small; and for finite distances, where the two data pointatter is manifested at the tafl&0]. In order to verify this, we

are correlated, the probability is even higher. The probabilitystudy the third cumulative moment, depicted in Fig. 6. As the
p(0|r) according to Eq.(19) was estimated using experi- upper limitc grows, the cumulative moment should approach

B. The third order moment
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the Kolmogorov law[see the definition Ec(6)]. It can be  time S{=*)(r) is even closer to the Kolmogorov law for
seen from Fig. 6 that the “ideal” cumulative moment smallr, as opposed t&C=4)(r), which is closer to the law
P(r) approaches the Kolmogorov law substantially fastersy, larger. The reason is the same: the intermittency is more
than the measured structure function. In particudar4 cor- pronounced at small, and so is the asymmetry. Figure 9
responds to 99.9968% of events for a Gaussian diStribUtio%ompares SONY/SE0r)| with PO/ PE9(r)| as
and between 99.459% and 99.796% for experimental event 3 3
As seen from pandb), even for this overwhelming majority
of events, the cumulative moment of the experimental PD
is still far from the Kolmogorov law, whilé>¢=4)(r) almost

ﬁjnctions oft for different distances. At=0 the tail mo-
I{nents coincide with the Kolmogorov law, and therefore the
curves approach-1, reflecting the fact that the skewness is
o ) . . C=a) oy negative. Att=4, that is, for quite rare events, the “ideal”
coincides with the law. It Is also evident th$§ (r) is moment is almost zero, as it should be, whereas the observed

_closer to the law for large distances, where the ir_1termittenc¥a" moments present a considerable fraction of the Kolmog-
is lower. The same trends are apparent from Fig. 7, WherSrov law. As in Fig. 7, the difference between “ideal” be-

cumulative moments as functions ofor different distances havior and observed tail moments is decreasing with grow-
are depicted. The momef®)(r) is almost )saturated & ing distances, which we attribute to the decreasing role of
=4, reaching the Kolmogorov law, wheresg (r) saturates jntermittency for larger. Finally, due to the inverse asym-
substantially more slowly. Due to inverse asymmetry almetry at small values, there is a deep minimum in the curves
small values, the cumulative functions are positive for smalky, “ideal” moments (corresponding to the positive parts in
¢, this positive maximum being more pronounced forine cymulative moments in Fig. 7, mentioned abpead a
P(C)(r). It can be noticed aISO that, as the distance increase%SS pronounced minimum in the experimenta| curves. In-
the difference between these two distributions becomes lesfeed, fort=2, say, the positive values that prevail at these
pronounced. . . . . _values are subtracted, resulting in an increase of the absolute
The situation with the tail momentd) is opposite. Itis  yalues of negative skewness. The difference between the
clear from Fig. 8a) that att>2, where the contribution of «jdeal” behavior and experimental curves at the cofemre
the tails becomes more important and the core is essentiallyronounced maximums for cumulative moments and mini-
cut off, the experimenta${)(r) is many orders of magnitude mums for the tail momentss directly related to the fact that
higher thanPY(r). The Kolmogorov law is achieved at the the inverse asymmetry @ is quite noticeable at the core in
smallestt, where the whole PDF contributes. As seen fromFig. 1(b), while it is not that conspicuous for the experimen-
Fig. 8b), even fort=4, corresponding te=0.3% of events, tal PDF’s depicted in Figs.(B)—5(d), even after removing
the taill moment is reasonably close to the law, whilethe zeros at the origin, as explained in Sec. IV A. This hap-
P=4)(r) is substantially further away from it. Note that this pens because both typical and inverse asymmetry are mani-
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fested in the core oP [and indeed they both can be seen inmay consider what we may call the inverse hypothesis,
Fig. 1(b)], whereas the experimental PDF’s exhibit the asym-namely, the RSH suggests thatandy are statistically inde-
metry mostly at the tails, so that the inverse asymmetry ipendent, and therefore the statisticsuoéire related to the
spread out over the whole core, making it less noticeable. statistics of the dissipation fieldthrough the RSH: and that

In summary, the tails of the PDF’s give a considerableis reflected in Eq(20). In the inverse case, we assume that
contribution to the third moment, thus presenting a directandy are statistically independent, testing this inverse hy-
link between the asymmetripn account of which the third pothesis experimentally. That is, we defide-u/y, then, if
moment does not vanisland intermittency. u andy are statistically independent,

V. CONNECTION BETWEEN THE DISSIPATION FIELD L
AND VELOCITY INCREMENTS <|V|>:<|u|><_> | 21)
It was shown in Sec. Il that the intermittengpf the y

dissipation fieldl possesses asymmetry. In contrast, Sec. IV

relates the asymmetry of the velocity increments, followingfrom which it follows that

from the Kolmogorov law, with the PDF’s tails, i.e., with the

intermittency of theu field. On the other hand, these two

fields are related through the RS4). As mentioned in Sec. (VI

I, there are some deviations from this relationship. We may <|“|>izm- (22

try to explain some of the deviations related to the asymme-

try by a quantitative study of those deviations. In particular, . )

one can compare the experimental value(op with what It can be seen from Fig. 18 that the experimentaf|ul)

follows from the RSH, the latter predicting that (being quite close t¢|u[)rsy) is higher thar(|ul); . Analo-
gously, one can compare the experimen{&V|) with
(IV[)rs=(lul)/(y), by Edq. (20, and with (|V]);

(lul)rsH=(IVIXY), (200 =(|u|)(1/y) [according to Eq(21)]. This comparison is de-

picted in Fig. 10b). Again, the RSH is satisfied substantially

by measuring the quantitiegV|) and(y) directly. Such a better than the inverse hypothesis.

comparison of|ul) and(|u|)rsnis given in Fig. 10a). These More detailed information about the first moment is given

curves are quite close to each other. On the other hand, orwy the correlation coefficient
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FIG. 8. (a) The ratio S{(r)/
PO(r) is depicted. For largd,
where only far tails may contrib-
ute, the experimental tail moment
is many orders of magnitude
higher than the “ideal” distribu-
tion. (b) Comparison ofS{=%(r)
with P=4)(r), and with the Kol-
mogorov law.
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— - that| Su| gives only a small contribution to the RSH. Assum-
ul—(|u
p(lul,y)= ((ul = (uiDty— () , (23 ingthe opposite, that is, thpdu|>|V"y|, would result in the
\/((m.u|—(|u|>)2)\/((y—(y>)2) inverse hypothesis, because thers statistically indepen-

dent of the dissipation fielgl.
which should be compared with what follows from the RSH,  We thus write

(VN =y

ke L (4 u au
p([ul,Y)rsH 22 (VDY) (24 V=§=V’+7. (26)

It can be seen from Fig. 16) that the correlatiop(|ul,y) is

relatively high—and this just echoes all previous stufils  |f we neglect the first term on the right-hand sitieverse
The coefficient p(|u|,y)rsn is only slightly bigger than hypothesig |V|=|sul/y, and increasing would correspond
p(lul,y). On the other hand, a8=u/y andy are supposed to decreasingV|, and vice versa. This anticorrelation corre-
to be statistically independent, the coefficignf{ul/y,y)  sponds to a negative correlation coefficiggu|/y,y); and,
should vanish. Figure 16) shows indeed that the latter is indeed, this coefficient is mostly negatifee Fig. 1(c)].
small, in good agreement with the RSH. Return to Eq.(26) with small du, that is, to the realistic
In order to make some quantitative estimate, we measurgityation. In that case no substantial change #tatistics can
the ratio of these two coefficientp(|V[,y)|/p(lul,y), de-  be expected. But, in spite of that, the contribution of this
picted in Fig. 10d). The ratio is small; surprisingly, how- correction to the statistics of could be substantial. Indeed,
ever, it is not small enough, especially for large distancegsmall values ofy would result in large su|/y, thus creating
(where it reaches 0.A19]). tails in theV distribution. Recall that the tails correspond to

In an attempt to interpret all this, we may assume that th@are events, and therefo@u does not need to be large in
deviations from the RSH are described by an additionapqer to give a substantial contribution to thetails. In

(smal) term in the RSH, addition, because of the noted asymmetry of the dissipation
field (see Sec. I, and in view of the above-mentioned an-
u=V'y+éu (25 ticorrelation betweers|u|/y andy, these tails in th&/ dis-

tribution are expected to possess a ‘“wrong” asymmetry.
[cf. Eq. (5)], whereV’ andy are statistically independent as Roughly speakingy™=u*/y* is greater thav"=u"/y~
before, anddu is statistically independent of (for other  simply because/~>y™. This might explain the “wrong”
modifications of the RSH see, e.§1,8,5]) We thus suppose asymmetry ofV=u/y (see Sec. )l
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FIG. 9. The tail moments
SY(r) (solid lines and PYV(r)
(dashed lines are depicted as
functions oft, for different fixed
distances. As in Fig. 7, the mo-
ments are normalized to their val-
ues att=0.

nounced in this range. It was shown in Sec. Ill by direct
measurements that the intermittency is asymmetric. On the
The asymmetry of turbulence is thus tightly related to theother hand, the asymmetry by itself is known for the velocity
intermittency. On one hand, the intermittency is well estabincrement statistics, following from the Kolmogorov law.
lished in the dissipation range, or at least, it is most proWe saw in Sec. |V that this asymmetry is manifested mostly
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the correlation coefficient
o(Jully,y), which is supposed to
vanish in the framework of the
RSH, is depicted inc) with the
dash-dotted line.(d) depicts the
ratio of |p(|ul/y,y)| to p(lul.y).
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in the tails, relating the asymmetry to the intermittency of thetures may be homogeneously distributed over the different
velocity increment statistics. subvolumes.

This link between the Kolmogorov law and the dissipa- The above scenario implies that the lifetime of an eddy is
tion field is of no surprise, the statistics of the velocity incre-r/v,, so that the eddy of sizeis decaying due to an insta-
ments being connected with those of the dissipation field vidility into smaller size eddies, which are still in the inertial
the RSH. In spite of some deviations from the RSHfange. Suppose now that a vortex is more persistent and it
(see, e.g., Sec.)Ythis hypothesis is well supported experi- lives somewhat longer. The energy transfer is someyvhat sup-
mentally. pressed, but not completely. At least, the symmetric part of

The ramp model suggests some explanations for the corthe strain tensor will generate a vortex sheet, or a tube of a
nection between the asymmetry and intermittency. In spite o2l radius(actually, the first rather than the secgncom-

some progress achieved in recent years in this respect, it _rable W'th_ the Taylor mu_:roscz_ale, Where the energy 1S ef-
still unclear what dynamical processes result in this link, s iciently dissipated due to viscosity. This eddy is thus persis-

that the ramp model still remains empirical. The presenfent’ forming a coherent structure, and the energy is

study, we feel, does suggest an approach to this key questioerosited from the scaledirectly to the viscous range with-

An attempt to address this problem is given below. out passing through the intermediate sc_al_e_s in the inertial
According to the classical picture, fully developed turbu- range. The structure thus consists of the |r_1|t|al e_ddy and the
lence transforms the large scale kinetic energy into the intergenerated thin sheet, resulting in both mtermntency and
mediate scales of the inertial range, where it goes int symmetry. I_3ecause of the scale separation betwesnd
smaller and smaller scales, eventually reaching the dissip he Taylor microscale, where the dissipation takes place, the

tion scale where viscous dissipation takes over and destro%lreCt connection between the velocity increments and the

. : : Issipation, as in Eq(4), is broken: because the RSH is
the eddies. This cascade of energy is suggested to be se ormulated for each fixed scale This may account for the

imilar, resulting i ecific scaling of the velocity incre- L . . .
simar, Tesuiing n spectic scaing velocity incr %ewatlons from the RSH, described by the additional term in

ments[1]. The RSH, on the other hand, suggests that th
dissipation is inhomogeneous, and fluctuates from one su
volume to anothef2]. As a result, the velocity increments
are statistically related to the dissipation field, as in €.
and the scaling is modified.

The direction of this energy cascade—from large eddie
to small ones—is reflected by the Kolmogorov 186y. i.e.,

g.(25). The main conclusion of these considerations is that
he intermittency and asymmetry are formed simultaneously.
Further studies are needed to confirm or discard the above
considerations. It is clear for now, though, that the concept of
éhe ramp model has proved to be useful in interpreting pre-
vious experimental results which show some deviations from

; ; the RSH. Study of the asymmetry of turbulence seems to be
by negative skewnesi]. According to Betchoy20], the fa useful tool in understanding the intermittency, and in con-

production of vorticity is efficient if the symmetric part o ruct i istent pict £ fully developed turb
the strain tensor results in forming vortex sheets, rather thaﬁ ructing a seli-consistent picture ot fully developed turbu-

vortex tubes. In other words, this statistical preference fo ence statistics.
vortex sheets over vortex tubes corresponds to the asymme-

try dictated by the Kolmogorov law. As the latter is satisfied

all over the inertial range, we may assume that these vortex The main ideas behind experimental studies of turbulence
sheetdqrather than tubgsare formed at each leve] as long  asymmetry were suggested by A. M. Yaglom. | thank K. R.
as the size corresponds to a subvolume in the inertial range Sreenivasan and B. Dhruva for generously sharing with me
This hierarchy of vortex sheets of different sizes does nothe data on atmospheric turbulence used in this paper. | ac-
correspond to an intermittency, though, because these struknowledge discussions with N. Lebovitz.
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