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Dissipation field asymmetry and intermittency in fully developed turbulence

S. I. Vainshtein
Department of Astronomy and Astrophysics, University of Chicago, Chicago, Illinois 60637

~Received 6 December 1999!

Experimental study of high Reynolds number turbulence provides additional evidence that asymmetry of
turbulence is related to the intermittency. The refined similarity hypothesis~RSH!, on the other hand, connects
the intermittency of the longitudinal velocity increments with that of the dissipation field, implying in particu-
lar that the dissipation field should be asymmetric as well. The asymmetry of the latter is indeed found in these
experiments. In addition, the study of the dissipation field asymmetry provides us with quantitative estimations
of the deviations from the RSH.

PACS number~s!: 47.27.Ak, 47.27.Jv
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I. INTRODUCTION

Self-similar properties of turbulence, suggested by K
mogorov~K41! @1#, have been intensively studied for a lon
time. The so-called K41 theory suggests that the probab
distribution ~PDF! of the longitudinal velocity increment
D rv for different distancesr should be self-similar: that is
the conditional probabilityp(uur ), u5D rv/^(D rv)2&1/2, is
independent ofr. Basically, this has proved to be the cas
although some deviations have been found in high or
structure functions~moments ofD rv!, which are traditionally
attributed to the existence of intermittency. A theory inco
porating the intermittency, the refined similarity hypothe
~RSH! @2#, links the statistics ofD rv with that of the dissi-
pation field« r , meaning that now the distributionp(Vur ),
where V5D rv/(r« r)

1/3, is self-similar ~independent ofr!
~see also@3#!. In spite of quite good experimental validatio
of RSH @4#, @5#, there are some deviations from the theor

One of the issues relevant to these deviations is asym
ric statistics. The asymmetry by itself follows from the Ko
mogorov law@6#,

^~D rv !3&52 4
5 ^«&r , ~1!

which simply manifests an energy transfer to small diffus
scales in fully developed turbulence@7#. It was suggested
recently that, in addition, the asymmetry is related to
intermittency @8#. This hypothesis, called the ramp mode
has so far been validated experimentally@5,8–11#, although
there still remain some fundamental questions unanswe
and even not addressed yet. In any case, if confirmed,
hypothesis would provide us with quite a useful tool f
studying intermittency. The point here is that traditiona
the intermittency has been studied through the high or
structure functions: the higher the better. Normally, howev
the high order moments are not supported by good statis
The asymmetry, on the contrary, is manifested already in
low order moments. To begin with, the Kolmogorov law~1!
corresponds to the third moment. Experimental studies
veal that the asymmetry is observed in even lower or
moments@9#.

One may say that the ramp model is consistent with
perimental data. Moreover, it has proved to be useful in
terpreting a large variety of data, and in studying interm
PRE 611063-651X/2000/61~5!/5228~13!/$15.00
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tency, as summarized in@5#. In spite of that, the ramp mode
still remains only empirical. The main issue is to understa
what dynamical processes are behind this connection
tween the asymmetry and intermittency. Still unable to so
this problem at the present stage~suggesting only some sim
plified ideas in Sec. VI!, we can approach it by addressin
the question: How exactly is the asymmetry of turbulen
related to the intermittency?

To be more specific, we subdivide this issue into tw
First, the Kolmogorov law~1! implies that the velocity in-
crements possess asymmetric statistics, whereas the inte
tency is really conspicuous only for the dissipation field. O
the other hand, the velocity increments are directly related
the dissipation field via the RSH. Thus, the first goal of th
study is to find out if the dissipation field is asymmetric
well.

Second, we might expect that the asymmetry of the P
of the velocity increments a priori, i.e., following from th
Kolmogorov law, should be supported by a vast majority
events, that is, by the PDF core. Moreover, the Kolmogo
law is the only moment of the velocity incrementsD rv
whose scaling is not subject to the intermittency correctio
Thus, it might seem that the law is unrelated to the interm
tency. However, it has long been observed that theD rv PDF
core is not really asymmetric, suggesting that the main as
metry comes from the tails@12#. Direct comparison of the
right and left PDF wings@11# supports this observation. In
this paper we study what part of the Kolmogorov law
formed by the core of the PDF, and what part of it is form
by the tails that are responsible for the intermittency ofD rv.

We will further refer to a PDF with tails as ‘‘singular.’
This paper is thus devoted to the experimental study of
dissipation field singularities, which are related to the sing
larities of theD rv PDF~through the RSH!, and manifested in
the third moment ofD rv ~the Kolmogorov law! through
asymmetry.

Section II is introductory as well, giving some basic i
formation about asymmetry aspects of turbulence, and
particular, about the ramp model. It is shown in Sec. III th
the intermittency of the dissipation field is asymmetric. T
direct connection between asymmetry, dictated by the K
mogorov law, and the tail parts of the velocity increme
PDF is studied in Sec. IV. Section V is devoted to studyi
the connection between these two fields—the dissipa
5228 ©2000 The American Physical Society
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FIG. 1. ~a! The Kolmogorov
law S3(r ) and second order struc
ture functionS2(r ). The straight
solid lines correspond to linear fit
ting, and dot-dashed lines to
S2(r )5C2(^«&r )2/3. ~b! ‘‘Ideal’’
PDF for V compared with Gauss
ian G(V). The inset shows these
two distributions for larger values
~c! Several typical PDF’s, com-
pared with GaussianG(u) with
the same standard deviation a
p(uur ). ~d! The third moment of
V, which is compared with the
theoretical value2(4/5)/C2
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field and the velocity increments—with emphasis on
asymmetry of statistics. The main conclusions are given
Sec. VI.

II. DESCRIPTION OF THE METHOD AND NOTATIONS

We used 103106 points of atmospheric data from Yal
University, with an estimated Taylor microscale Reyno
number of 9540. The data are treated in the spirit of
Taylor hypothesis, that is, the time series is treated as a
dimensional cut of the process~for more detail, see@10,5#!.

We study the statistics of the velocity incrementsD rv and
of the dissipation field« r for different distances, fromr /h
553.33 tor /h513 333.3~in terms of the Kolmogorov scale
h!. We denote structure functions

Sn5^~D rv !n&,

and generalized structure functions

Sq~r !5^uD rvuq&.

It can be seen from Fig. 1~a! thatS3(r ), i.e., the Kolmogorov
law ~1!, can been fitted for a somewhat shorter scale ran
from r /h553.33 tor /h55333.33, that is, for two decade
The exponent is 0.99260.018, quite close to the unity re
quired for the Kolmogorov law~if we remove the right end
point taken for the fitting, then the exponent deviates sligh
more from unity!. This range of distances, where the Ko
mogorov law fits satisfactorily, we will consider as ‘‘stan
dard,’’ and all other measurements were provided in t
range. In particular, we calculated^«& from this experimental
plot, as follows from Eq.~1!. This value of^«& can be sub-
stituted into the second moment,

S2~r !5C2~^«&r !2/3, ~2!

with Kolmogorov constantC25260.4; see, e.g.,@3#. It can
be seen from Fig. 1~a! that the experimentalS2(r ) in our
e
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y
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range of distances is quite close to Eq.~2!, illustrating self-
consistency of the measurements. The real slope ofS2(r ),
obtained by fitting, is slightly steeper, consistent with t
well known observation that the exponent is somewhat b
ger than 2/3: namely, the exponentz250.7260.01, quite
close toz250.71 obtained in@13#.

The local rate of dissipation«, and correspondingly the
dissipation field« r , are also understood as one dimension

«515n~]xvx!
2, « r5

1

r Ex2r /2

x1r /2

«~x!dx, ~3!

which is sometimes called pseudodissipation. It was rei
ated recently that pseudodissipation provides useful infor
tion, especially because it is measured for very high R
nolds numbers@14#.

According to the refined similarity hypothesis@2#,

D rv5AC2V~« r r !1/3, ~4!

whereV is a random function statistically independent of«.
The prefactor in Eq.~4! ensures that the second mome
corresponds to the experimental value~2!, provided ^V2&
'1. We will use Eq.~4! in the dimensionless form,

u5Vy, ~5!

where

u5
D rv

AC2~^«&r !1/3
, y5S « r

^«& D
1/3

.

Thus,u is defined in such a way that^u2& should be close to
unity. This is indeed the case, as follows from Fig. 1~a!, or
when recovering the second moments from experime
PDF’s, i.e., calculating*u2p(uur )du from experimental
p(uur ).
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Thus, according to the RSH,V is a nonsingular universa
function, with standard deviation close to unity. AsV andy
are statistically independent, andy is non-negative, it follows
that ^V&50. On the other hand, the third moment ofV is
defined by the Kolmogorov law~1!, and by definition~4!,
^V3&52(4/5)/C2

3/2. These two requirements,^V&50 and
^V3&,0, suggest thatp(2V).p(V) for large uVu, and, in
order to balance this to make the first moment vanishp
(2V),p(V) for small uVu. However, as the correspondin
PDF is nonsingular, the ‘‘large’’ values ofuVu are in fact
moderate, say, 1,uVu,3. In other words, both asymmetrie
mentioned above should be inside the PDF core. Figure~b!
depicts this ‘‘ideal’’ PDF forV, denoted byP(V). It is con-
structed as a sum of two Gaussian distributions with stand
deviations close to unity~to avoid any tails, because th
function should be nonsingular!. This function thus satisfies

E P~V!dV51, E P~V!VdV50,

E P~V!V2dV51, E P~V!V3dV52
4

5

1

C2
3/2.

The function does not contain tails: its deviation from Gau
ian form at large values is insignificant. However, at t
core, it has the needed asymmetry:P(2V).P(V) for 1
,uVu,2, say, andP(2V),P(V), for uVu,1. This function
will be used to compare with experimental PDF’s.

As to the PDF foru, it is expected both from K41 and th
RSH that the asymmetry will be qualitatively the same as
P(V). The only difference is that, because of the presenc
a singular processy in Eq. ~5!, the velocity incrementsu are
singular as well, i.e., there are tails inp(uur ). However, asy
‘‘does not know’’ about the sign ofu, being always non-
negative, this asymmetry should not be noticeable in
tails. In other words, the asymmetry should be manifes
mainly in the cores of the PDF, rather than in the tails. T
difference~i.e., that the processV is nonsingular, whileu is
singular! is expected to completely disappear for the th
momentS3(r ). Indeed, according to Eq.~4!, the intermit-
tency is irrelevant for this moment, corresponding to t
Kolmogorov law. In other words, this moment does not va
ish only due to asymmetry. Thus, an important test for
RSH is to check if this is indeed the case. In order to do t
we will consider cumulative moments,

^u3&c5E
2c

c

u3p~uur !du, ^V3&c5E
2c

c

V3P~V!dV, ~6!

and what we may call tail moments,

^u3& t5E
2`

2t

u3p~uur !du1E
t

`

u3p~uur !du,

~7!

^V3& t5E
2`

2t

V3P~V!dV1E
t

`

V3P~V!dV.

We denote
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S3
~c!~r !5C2

3/2^«&r ^u3&c , P~c!~r !5C2
3/2^«&r ^V3&c , ~8!

so that, by definition~4!, S3
(c→`)(r )5S3(r ), and, according

to the RSH,P(c→`)(r )5S3(r ). Analogously,

S3
~ t !~r !5C2

3/2^«&r ^u3& t , P~ t !~r !5C2
3/2^«&r ^V3& t , ~9!

so thatS3
(t50)(r )5P(t50)(r )5S3(r ). As mentioned above

the intermittency is irrelevant for this moment, and therefo
one would expect that the main contribution to the mom
would be given by the majority of events, that is, by the PD
core. In other words, qualitatively, bothS3

(c)(r ) andS3
(t)(r )

are expected to behave likeP(c)(r ) and P(t)(r ). So one of
the tests of the RSH would be to compare the experime
S3

(c)(r ) and the S3
(t)(r ) with ‘‘ideal’’ behavior given by

P(c)(r ) andP(t)(r ).
According to the RSH,y andV are statistically indepen

dent; in particular,y should not ‘‘know’’ about the sign ofV
~and, therefore, it should be uncorrelated with the sign ofu!.
We denote byy6 the dissipation field corresponding tou6.
We will deal with conditional probabilities,p(y6,61ur )
5p(y,u/uuu ur ), so that only p(y1,1ur )[p(y1ur ) and
p(y2,21ur )[p(y2ur ) do not vanish, whilep(y1,21ur )
5p(y2,1ur )50. These PDF’s are thus normalized to satis

E
0

`

p~y1ur !dy11E
0

`

p~y2ur !dy251.

Statistical independence betweeny and V means that the
PDF’s are symmetric,p(y1ur )5p(y2ur ), and therefore

E
0

`

p~y1ur !dy15E
0

`

p~y2ur !dy25 1
2 .

In particular, ifv5]xv(x) is Gaussian, then the distributio
for y5«1/3/^«1/3&1/2 has the form

Gv~yur !5
3y1/2

2A2p
e2y3/2, ~10!

which differs from Eq.~23! of @5# by a factor 1/2, because
the normalization is now different.

Another way to study the dissipation asymmetry is to co
sider two sets,

«6~x!5
1

2 S «~x!6«~x!
]xvx

u]xvxu
D . ~11!

It is clear that these two sets do not intersect with each ot
and therefore it is possible to introduce separate measur

m r
65E

x2r /2

x1r /2

«6~x!dx, ~12!

cf. Eq. ~3!. In particular, we will study moments of thes
measures, defining the generalized dimensions as follow
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^~m̄ r
6!q&;r jq

6

5r 2~12Dq
6

!~q21!, ~13!

where

m̄ r
65

m r
6

r
.

The experimental studies of the PDF’s show some de
tions from the ‘‘ideal’’ behavior described above. Figure 1~c!
depicts typical experimental PDF’s. These deviations can
summarized as follows:~1! There is asymmetry of the
p(uur ), noticeable in the tails; namely, the left wing is de
nitely higher than the right@11#. ~2! The PDF forV has tails
as well, the right-hand wing reaching values ofp(uur ), and
the left-hand wing is still above a Gaussian distribution, a
typically aboveP(V), although not much@5#. ~3! The right-
hand wings ofp(Vur ) are higher than the left-hand wing
i.e., the asymmetry ofp(Vur ) is opposite to that of the
‘‘ideal’’ PDF for V, and opposite to the asymmetry o
p(uur ). This observation is supported by direct measurem
of odd moments. Thus, as was shown in@5#, ^V3& is often
positive. Figure 1~d! illustrates this result once again. Th
difference between this plot and corresponding plots in@5# is
that the plots in@5# depict different data samples, normalize
separately, so they can be considered as separate ex
ments, whereas all present measurements correspond t
processing of all available data.

Finally, we summarize what the ramp model predicts.
essence, the ramp model suggests that the asymmet
manifested not so much at the cores of the PDF’s but ra
at the tails, i.e., the asymmetry is by itself singular, and th
it is directly related to the intermittency. More specifically,
terms of central moments, the above means the follow
Let a65(uau6a)/2, wherea is some random process.
applicable for this process, the ramp model suggests tha

^~a2!q&.^~a1!q& for q.1,
~14!

^~a2!q&,^~a1!q& for q,1.

In addition, if the moments ofa6 possess any scaling

^a6&q;r jq
6

, as in Eq.~13!, then

jq
1.jq

2 for q.1,
~15!

jq
1,jq

2 for q,1,

which, according to Eq.~13!, corresponds to

Dq
2,Dq

1 . ~16!

In particular, for the velocity increments, the~negative!
skewness is defined mostly by the tails of the velocity inc
ment PDF, and the core possesses opposite symmetry,

p~u1ur !,p~u2ur ! for large u6,
~17!

p~u1ur !.p~u2ur ! for the core.
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e
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III. ASYMMETRY OF THE DISSIPATION FIELD

A. Asymmetry of p„yÁzr …

The results of the measurements can be summarize
follows. First, all the measuredy6 distributions are singular
being well aboveGv @Eq. ~10!#. Second, the strength of th
singularity of both6 dissipation fields is less than that o
D rv: the PDF’s fory6 are noticeable below those foru6

5(uuu6u)/2, for values, say, greater than 2. In addition, f
large distances, there is always a cutoff value for they6

distributions, e.g., there are no events withy6.6, say, while
there are larger values ofu6, up to the measured limit of 8
~cf. @5#!. These trends can also be seen from Fig. 2, illust
ing these distributions for four distances. Third, for value
say, greater than 2, the PDF’s fory2 are typically higher
than those fory1 ~some examples are given in Fig. 2!, in
accordance with the ramp model~see the end of Sec. II!.

Note, however, that this excess is manifested only a
trend: in contrast to theu6 asymmetry, the latter being reall
systematic, like a law. Indeed,p(u2,ur ).p(u1,ur ) for u
.2, and for all distances@10#. Nevertheless, this trend is als
obvious, and that can be seen from the behavior of the fo
moment ^(y6)4& depicted in Fig. 3~a!. It definitely shows
that ^(y2)4&.^(y1)4&, for all distances. Returning to th
PDF in Fig. 2: an occasional prevalence ofp(y1ur ) over
p(y2ur ) for largey6 can be attributed to the fact that we a
dealing with the very end of the distribution function, that
with very rare events, subject to strong fluctuations~not so
with the u6 distributions; as seen from Fig. 2, the studi
values are far from the end of the distributions!. Therefore, it
makes sense to study the cores of these distributions, w
statistics are good. According to the ramp model, the as
metry at small values is opposite to that at large ones, tha
for these values,p(y1ur ).p(y2ur ) @cf. Eq. ~17!#. The ex-
perimental PDF is indeed in agreement with this expectat
as seen from the insets to Fig. 2. The insets depict so
selected distances; it is noteworthy, however, that all
PDF’s from the data we analyzed look this way:p(y1ur )
.p(y2ur ) for y6<1.

In order to show it quantitatively, we measured the re
tive number of events withy<1 ~a sort of box counting!,
namely,N65*0

1p(y6ur )dy6. Figure 3~b! shows that indeed
N1.N2, for all the studied data.

Another presentation of this asymmetry is provided by
zeroth moment. According to the definition given in Sec.
the zeroth moment simply corresponds to the box coun
for the distributionsy6, or, equivalently, foru6 distribu-
tions. If the process were symmetric, then

p~y1.0ur !5p~y2.0ur !5 1
2 ,

that is, the probability ofu being positive is the same as th
probability of u being negative, and equal to 1/2~we ex-
cluded valuesu50 from the data, considering them spur
ous; see Sec. IV A below!. According to the ramp model, we
expect that the negative parts of theu distribution will oc-
cupy less space than the positive parts@see Eq.~14! for q
50#. Figure 3~c! shows that this is indeed the case. By de
nition, p(y1.0ur )1p(y2.0ur )51, that is, if the negative
distribution occupiesf’s fraction of the experimental interva
( f ,1/2), then the positive part occupies the rest, i.e.,
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FIG. 2. Comparison of the
PDF’s for the velocity increments
D rv with those for the dissipation
field, separately for6 distribu-
tions, for four distances. They2

distribution is typically above the
y1 distribution for large values.
Both these distributions are we
aboveGv—a distribution for« if
]xv(x) is Gaussian. The inset
give the same PDF’s, but fo
smaller values.p(y1ur ) is de-
picted by the solid line and
p(y2ur ) by the dashed line. It can
be seen thatp(y1ur ).p(y2ur )
for y<1, and that feature appear
in all the data we studied. All the
distances are given in terms of th
Kolmogorov microscaleh.
or
a
b
t

o

2f)’s fraction. Therefore, if there is some scaling f
f , f (r )5a0r j0, then the negative part may be considered
singular, and the corresponding Kolmogorov capacity can
estimated. In that case, the positive part is trivially related
the negative part, namely, it is512a0r j0, which is not a
power law, and therefore not interesting. The Kolmogor
capacityD0 is defined through the formula
s
e
o

v

f ~r !5a0r 12D0, ~18!

which is a particular case of Eq.~13!.
It is apparent from Fig. 3~c! that the fractionf (r ) is in-

deed systematically increasing with growingr, as suggested
by expression~18!, providedD0,1. The fitting of the box
counting of this distribution to a straight line results inD0
.

.

,
s,

e

r

FIG. 3. Different moments of
the y6 distribution. Both axes in
all panels are in logarithmic scale
~a! presents ^(y1)4&, asterisks,
and ^(y2)4&, diamonds. The
points are fitted with straight lines
The inequality^(y2)4&.^(y1)4&
is always satisfied. In addition
these lines have different slope
corresponding toD4

2,D4
1 . ~b!

The number of eventsN6 with 0
<y6<1; N1, solid line, N2

dashed line. It can be seen that th
inequalityN1.N2 is always sat-
isfied. ~c! Box counting~asterisks
for the negative and diamonds fo
the positive distributions! and fit-
ting for the negative distribution.
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FIG. 4. ~a! Different moments
of the two sets Eq.~11!; the num-
bers on the left give the values o
q. ~b! Exponentsjq . ~c! The di-
mensions calculated according t
Eq. ~13!. ~d! Same for smallerq.
In all panels, solid lines corre-
spond to the1 distribution and
dashed lines to the2 distribu-
tions.
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50.998360.0002. As the generalized dimensions are
creasing monotonically with growingq @15#, a nontrivial
Kolmogorov capacityD0

2,1 means that all the dimension
are nontrivial,Dq

2,1. Recall that the statistics for the zero
moment are as good as possible. In spite of the fact that
deviation from unity is tiny, 12D050.0017, it is still con-
siderably larger than the error, 0.0002. In addition, the n
trivial Kolmogorov capacity has already been observed@10#,
although for substantially smaller distances, for which
slope is steeper and therefore the Kolmogorov capacity
viates more strongly from unity. It is hard to compare the
two measurements, though. They correspond to two diffe
processes~pipe turbulence in@10# and atmospheric turbu
lence in the present study!, and because the measurements
@10# correspond to a range between the dissipation and i
tial ranges, whereas all the distances here are well inside
inertial range. Nevertheless, in view of the small deviation
the Kolmogorov capacity from unity in our ‘‘standard
range of distances, there is no guarantee that some syste
errors are not involved, making it nontrivial. At the sam
time, the asymmetry itself, i.e., thatf (r ),1/2, consistent
with Eq. ~14!, is clearly seen from Fig. 3~c!.

B. Asymmetry of the µr
Á measures

The most straightforward approach to studying the asy
metry and related intermittency is to analyze the two sets«6
-

he
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he
f

atic

-

defined in Eq.~11!. Figure 4~a! illustrates some of the stud
ied momentŝ (m̄ r

6)q&. It is clear that̂ (m̄ r
2)q&.^(m̄ r

1)q&, in
accordance with the ramp model@see Eq.~14!#.

Panel~b! of Fig. 4 confirms Eq.~15!, although the two
curves are quite close to each other. Direct calculation of
generalized dimensions, defined in Eq.~13! @panels~c! and
~d!# shows that Eq.~16! is satisfied as well. As seen from
panel~d!, the error bars do not overlap for smallq, in spite of
the fact that the difference between1 and2 dimensions is
small. The statistic here is reliable, because the moments
of low order. Forq>2.5 the error bars do overlap, so th
one can claim that inequality~16! is satisfied at theseq’s
only as a trend. We should keep in mind, however, that th
moments are in effect of relatively high orders, correspo
ing via the RSH to velocity increments of orderq57.5 or
higher.

IV. ASYMMETRY OF THE PDF CORE

A. The PDF for u: problem of zero values

According to Eq.~17!, the PDF core foru is expected to
possess an asymmetry opposite to that at the tails. In spi
good statistics at the core this asymmetry was not really
served. Usually, the PDF has a distinctive peak at ze
which might obscure the asymmetry.

The question of the behavior of the PDF atu50 is im-
portant by itself. Indeed, the PDF may have ad function at
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FIG. 5. ~a! The probability of
zeros: experimental and digita
according to Eq.~19!. ~b!–~d! il-
lustrate the PDF cores for differ
ent distances, with and withou
additional zeros atu50. The mea-
sured PDF’s do contain zeros, bu
we consider them spurious.
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the origin, i.e.,p(uur );d(u), which would mean a non
trivial Kolmogorov capacity~see, e.g.,@16#!. The experimen-
tal PDF’s seem to suggest that this is indeed the case.
histogramsH(uur ) are constructed for the interval28<u
<8, with bin sizeD50.1. For all bins, we haveH„mD,u
,(m11)Dur ….0, where m50,61,62, . . . , whereas
H(mDur )50, as it should for any continuous distributio
The only exception isH(0,ur ), which always contains a con
siderable amount of elements~i.e., H(0,ur )@1!. These zeros
could be simply spurious, though. Indeed, the raw data
given in ~four digit! integers, so that the differences betwe
two data points~calculated in constructing the structure fun
tions! have a finite probability of being zero. Denoting b
p(ni) the probability that the data assume the valueni , then
the probability of zero will read

p~0ur !5
H~u50ur !

N
5(

i
p~ni !p~ni uni ,r !, ~19!

whereN is the number of events, andp(ni unj ,r ) is the con-
ditional probability that the second data point separated
distancer assumes the valuenj provided that the first data
point assumes the valueni . For r→` the two events are
statistically independent, meaning thatp(ni unj ,r→`)
5p(ni). If, e.g., the distribution is homogeneous,p(ni)
51/n, n being the number of available numbers, th
p(0ur→`)51/n as well. In practice, this probability is no
that small; and for finite distances, where the two data po
are correlated, the probability is even higher. The probab
p(0ur ) according to Eq.~19! was estimated using exper
he

re

y

ts
y

mental probabilities on the right-hand side of Eq.~19!. The
resulting probability is called ‘‘digital’’ and depicted in Fig
5~a!. The figure also compares this probability with dire
measurements of the number of zeros. The real probab
p(0ur ) is always below the digital, and therefore the me
sured numbersH(0,ur ) are unreliable.

These numbers, however, give a considerable contribu
to the histogram at20.1,u,0.1. If we remove this contri-
bution, thus considering it spurious, the histograms chan
Figures 5~c!–~d! show the new PDF’s and compare the
with the old. One can clearly see the ‘‘needed’’ asymme
of the cores, and that the spurious~including the zeroth! PDF
confuses the asymmetry, looking much more symmetric t
it should. Thus, we consider the zeros appearing at the or
of the PDF foru as spurious. Another independent confirm
tion of such an approach is that the Kolmogorov capacity
the u process is always observed as trivial~see, e.g.,@17#!,
unlike the u2 processes, which, as argued in Sec. III
might possess a nontrivial Kolmogorov capacity.

B. The third order moment

It can be expected that this moment is of low order, co
cerning essentially the core of the PDF, while the tails
not supposed to give a substantial contribution. This is d
nitely true for the generalized structure functionS3(r ). How-
ever, the structure functionS3(r ) might behave differently,
because it does not vanish only due to asymmetry, and
latter is manifested at the tails@10#. In order to verify this, we
study the third cumulative moment, depicted in Fig. 6. As t
upper limitc grows, the cumulative moment should approa
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FIG. 6. ~a! Comparison of
S3

(c)(r ) ~shaded surface! with
P(c)(r ) ~dashed surface! as func-
tions of r /h andc. Both functions
approach the Kolmogorov law a
largec ~bold line!. ~b! Same com-
parison forc54.
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the Kolmogorov law@see the definition Eq.~6!#. It can be
seen from Fig. 6 that the ‘‘ideal’’ cumulative momen
P(c)(r ) approaches the Kolmogorov law substantially fas
than the measured structure function. In particular,c54 cor-
responds to 99.9968% of events for a Gaussian distribut
and between 99.459% and 99.796% for experimental eve
As seen from panel~b!, even for this overwhelming majority
of events, the cumulative moment of the experimental P
is still far from the Kolmogorov law, whileP(c54)(r ) almost
coincides with the law. It is also evident thatS3

(c54)(r ) is
closer to the law for large distances, where the intermitte
is lower. The same trends are apparent from Fig. 7, wh
cumulative moments as functions ofc for different distances
are depicted. The momentP(c)(r ) is almost saturated atc
54, reaching the Kolmogorov law, whereasS3

(c)(r ) saturates
substantially more slowly. Due to inverse asymmetry
small values, the cumulative functions are positive for sm
c, this positive maximum being more pronounced f
P(c)(r ). It can be noticed also that, as the distance increa
the difference between these two distributions becomes
pronounced.

The situation with the tail moments~7! is opposite. It is
clear from Fig. 8~a! that at t.2, where the contribution o
the tails becomes more important and the core is essent
cut off, the experimentalS3

(t)(r ) is many orders of magnitud
higher thanP(t)(r ). The Kolmogorov law is achieved at th
smallestt, where the whole PDF contributes. As seen fro
Fig. 8~b!, even fort54, corresponding to'0.3% of events,
the tail moment is reasonably close to the law, wh
P(t54)(r ) is substantially further away from it. Note that th
r

n,
ts.

F

y
re

t
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r
s,
ss
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time S3
(t54)(r ) is even closer to the Kolmogorov law fo

small r, as opposed toS3
(c54)(r ), which is closer to the law

for larger. The reason is the same: the intermittency is m
pronounced at smallr, and so is the asymmetry. Figure
compares S3

(t)(r )/uS3
(t50)(r )u with P(t)(r )/uP(t50)(r )u as

functions of t for different distances. Att50 the tail mo-
ments coincide with the Kolmogorov law, and therefore t
curves approach21, reflecting the fact that the skewness
negative. Att>4, that is, for quite rare events, the ‘‘ideal
moment is almost zero, as it should be, whereas the obse
tail moments present a considerable fraction of the Kolm
orov law. As in Fig. 7, the difference between ‘‘ideal’’ be
havior and observed tail moments is decreasing with gro
ing distances, which we attribute to the decreasing role
intermittency for larger. Finally, due to the inverse asym
metry at small values, there is a deep minimum in the cur
for ‘‘ideal’’ moments ~corresponding to the positive parts
the cumulative moments in Fig. 7, mentioned above!, and a
less pronounced minimum in the experimental curves.
deed, fort52, say, the positive values that prevail at the
values are subtracted, resulting in an increase of the abso
values of negative skewness. The difference between
‘‘ideal’’ behavior and experimental curves at the cores~more
pronounced maximums for cumulative moments and m
mums for the tail moments! is directly related to the fact tha
the inverse asymmetry ofP is quite noticeable at the core i
Fig. 1~b!, while it is not that conspicuous for the experime
tal PDF’s depicted in Figs. 5~b!–5~d!, even after removing
the zeros at the origin, as explained in Sec. IV A. This ha
pens because both typical and inverse asymmetry are m



t
-
s

F

-

5236 PRE 61S. I. VAINSHTEIN
FIG. 7. Same as in Fig. 6, bu
for fixed distances, while the cu
mulative moments are depicted a
functions of c. Solid line corre-
sponds to the experimental PD
and dashed to the ‘‘ideal’’ PDF.
For illustrative purposes all the
curves are normalized to their ini
tial values~at c50!.
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fested in the core ofP @and indeed they both can be seen
Fig. 1~b!#, whereas the experimental PDF’s exhibit the asy
metry mostly at the tails, so that the inverse asymmetry
spread out over the whole core, making it less noticeabl

In summary, the tails of the PDF’s give a considera
contribution to the third moment, thus presenting a dir
link between the asymmetry~on account of which the third
moment does not vanish! and intermittency.

V. CONNECTION BETWEEN THE DISSIPATION FIELD
AND VELOCITY INCREMENTS

It was shown in Sec. III that the intermittency~of the
dissipation field! possesses asymmetry. In contrast, Sec.
relates the asymmetry of the velocity increments, followi
from the Kolmogorov law, with the PDF’s tails, i.e., with th
intermittency of theu field. On the other hand, these tw
fields are related through the RSH~4!. As mentioned in Sec
II, there are some deviations from this relationship. We m
try to explain some of the deviations related to the asymm
try by a quantitative study of those deviations. In particul
one can compare the experimental value of^uuu& with what
follows from the RSH, the latter predicting that

^uuu&RSH5^uVu&^y&, ~20!

by measuring the quantitieŝuVu& and ^y& directly. Such a
comparison of̂ uuu& and^uuu&RSH is given in Fig. 10~a!. These
curves are quite close to each other. On the other hand,
-
is

e
t

V

y
-
,

ne

may consider what we may call the inverse hypothe
namely, the RSH suggests thatV andy are statistically inde-
pendent, and therefore the statistics ofu are related to the
statistics of the dissipation fieldy through the RSH: and tha
is reflected in Eq.~20!. In the inverse case, we assume thau
and y are statistically independent, testing this inverse h
pothesis experimentally. That is, we defineV5u/y, then, if
u andy are statistically independent,

^uVu&5^uuu&K 1

yL , ~21!

from which it follows that

^uuu& i5
^uVu&
^1/y&

, ~22!

It can be seen from Fig. 10~a! that the experimental̂uuu&
~being quite close tôuuu&RSH! is higher than̂ uuu& i . Analo-
gously, one can compare the experimental^uVu& with
^uVu&RSH5^uuu&/^y&, by Eq. ~20!, and with ^uVu& i
5^uuu&^1/y& @according to Eq.~21!#. This comparison is de-
picted in Fig. 10~b!. Again, the RSH is satisfied substantial
better than the inverse hypothesis.

More detailed information about the first moment is giv
by the correlation coefficient
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FIG. 8. ~a! The ratio S3
(t)(r )/

P(t)(r ) is depicted. For larget,
where only far tails may contrib-
ute, the experimental tail momen
is many orders of magnitude
higher than the ‘‘ideal’’ distribu-
tion. ~b! Comparison ofS3

(t54)(r )
with P(t54)(r ), and with the Kol-
mogorov law.
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r~ uuu,y!5
Š~ uuu2^uuu&!~y2^y&!‹

AŠ~m.uu2^uuu&!2
‹AŠ~y2^y&!2

‹

, ~23!

which should be compared with what follows from the RS

r~ uuu,y!RSH5
^uVu&AŠ~y2^y&!2

‹

A^V2&^y2&2^uVu&2^y&2
. ~24!

It can be seen from Fig. 10~c! that the correlationr(uuu,y) is
relatively high—and this just echoes all previous studies@4#.
The coefficient r(uuu,y)RSH is only slightly bigger than
r(uuu,y). On the other hand, asV5u/y andy are supposed
to be statistically independent, the coefficientr(uuu/y,y)
should vanish. Figure 10~c! shows indeed that the latter
small, in good agreement with the RSH.

In order to make some quantitative estimate, we meas
the ratio of these two coefficients,ur(uVu,y)u/r(uuu,y), de-
picted in Fig. 10~d!. The ratio is small; surprisingly, how
ever, it is not small enough, especially for large distan
~where it reaches 0.4@19#!.

In an attempt to interpret all this, we may assume that
deviations from the RSH are described by an additio
~small! term in the RSH,

u5V8y1du ~25!

@cf. Eq. ~5!#, whereV8 andy are statistically independent a
before, anddu is statistically independent ofy ~for other
modifications of the RSH see, e.g.,@18,5#! We thus suppose
,

re

s

e
l

that uduu gives only a small contribution to the RSH. Assum
ing the opposite, that is, thatuduu@uV8yu, would result in the
inverse hypothesis, because thenu is statistically indepen-
dent of the dissipation fieldy.

We thus write

V5
u

y
5V81

du

y
. ~26!

If we neglect the first term on the right-hand side~inverse
hypothesis!, uVu5uduu/y, and increasingy would correspond
to decreasinguVu, and vice versa. This anticorrelation corr
sponds to a negative correlation coefficientr(uuu/y,y); and,
indeed, this coefficient is mostly negative@see Fig. 10~c!#.

Return to Eq.~26! with small du, that is, to the realistic
situation. In that case no substantial change inu statistics can
be expected. But, in spite of that, the contribution of th
correction to the statistics ofV could be substantial. Indeed
small values ofy would result in largeuduu/y, thus creating
tails in theV distribution. Recall that the tails correspond
rare events, and thereforedu does not need to be large i
order to give a substantial contribution to theV tails. In
addition, because of the noted asymmetry of the dissipa
field ~see Sec. III!, and in view of the above-mentioned an
ticorrelation betweenduuu/y and y, these tails in theV dis-
tribution are expected to possess a ‘‘wrong’’ asymmet
Roughly speaking,V15u1/y1 is greater thanV25u2/y2

simply becausey2.y1. This might explain the ‘‘wrong’’
asymmetry ofV5u/y ~see Sec. II!.
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FIG. 9. The tail moments
S3

(t)(r ) ~solid lines! and P(t)(r )
~dashed lines! are depicted as
functions of t, for different fixed
distances. As in Fig. 7, the mo
ments are normalized to their va
ues att50.
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VI. CONCLUSION

The asymmetry of turbulence is thus tightly related to
intermittency. On one hand, the intermittency is well est
lished in the dissipation range, or at least, it is most p
e
-
-

nounced in this range. It was shown in Sec. III by dire
measurements that the intermittency is asymmetric. On
other hand, the asymmetry by itself is known for the veloc
increment statistics, following from the Kolmogorov law
We saw in Sec. IV that this asymmetry is manifested mos
t

FIG. 10. Comparison of ex-
perimental measurements@solid
lines in ~a!–~c!# with what is pre-
dicted by the RSH~dashed lines!,
and with the assumption thatu
andy are statistically independen
~dash-dotted lines!. In particular,
the correlation coefficient
r(uuu/y,y), which is supposed to
vanish in the framework of the
RSH, is depicted in~c! with the
dash-dotted line.~d! depicts the
ratio of zr(uuu/y,y) z to r(uuu,y).
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in the tails, relating the asymmetry to the intermittency of t
velocity increment statistics.

This link between the Kolmogorov law and the dissip
tion field is of no surprise, the statistics of the velocity incr
ments being connected with those of the dissipation field
the RSH. In spite of some deviations from the RS
~see, e.g., Sec. V!, this hypothesis is well supported expe
mentally.

The ramp model suggests some explanations for the
nection between the asymmetry and intermittency. In spit
some progress achieved in recent years in this respect,
still unclear what dynamical processes result in this link,
that the ramp model still remains empirical. The pres
study, we feel, does suggest an approach to this key ques
An attempt to address this problem is given below.

According to the classical picture, fully developed turb
lence transforms the large scale kinetic energy into the in
mediate scales of the inertial range, where it goes i
smaller and smaller scales, eventually reaching the diss
tion scale where viscous dissipation takes over and dest
the eddies. This cascade of energy is suggested to be
similar, resulting in specific scaling of the velocity incr
ments @1#. The RSH, on the other hand, suggests that
dissipation is inhomogeneous, and fluctuates from one s
volume to another@2#. As a result, the velocity increment
are statistically related to the dissipation field, as in Eq.~4!,
and the scaling is modified.

The direction of this energy cascade—from large edd
to small ones—is reflected by the Kolmogorov law@6#. i.e.,
by negative skewness@7#. According to Betchov@20#, the
production of vorticity is efficient if the symmetric part o
the strain tensor results in forming vortex sheets, rather t
vortex tubes. In other words, this statistical preference
vortex sheets over vortex tubes corresponds to the asym
try dictated by the Kolmogorov law. As the latter is satisfi
all over the inertial range, we may assume that these vo
sheets~rather than tubes! are formed at each levelr, as long
as the sizer corresponds to a subvolume in the inertial ran
This hierarchy of vortex sheets of different sizes does
correspond to an intermittency, though, because these s
h
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tures may be homogeneously distributed over the differ
subvolumes.

The above scenario implies that the lifetime of an eddy
r /v r , so that the eddy of sizer is decaying due to an insta
bility into smaller size eddies, which are still in the inerti
range. Suppose now that a vortex is more persistent an
lives somewhat longer. The energy transfer is somewhat s
pressed, but not completely. At least, the symmetric par
the strain tensor will generate a vortex sheet, or a tube
small radius~actually, the first rather than the second!, com-
parable with the Taylor microscale, where the energy is
ficiently dissipated due to viscosity. This eddy is thus pers
tent, forming a coherent structure, and the energy
deposited from the scaler directly to the viscous range with
out passing through the intermediate scales in the ine
range. The structure thus consists of the initial eddy and
generated thin sheet, resulting in both intermittency a
asymmetry. Because of the scale separation betweenr and
the Taylor microscale, where the dissipation takes place,
direct connection between the velocity increments and
dissipation, as in Eq.~4!, is broken: because the RSH
formulated for each fixed scaler. This may account for the
deviations from the RSH, described by the additional term
Eq. ~25!. The main conclusion of these considerations is t
the intermittency and asymmetry are formed simultaneou

Further studies are needed to confirm or discard the ab
considerations. It is clear for now, though, that the concep
the ramp model has proved to be useful in interpreting p
vious experimental results which show some deviations fr
the RSH. Study of the asymmetry of turbulence seems to
a useful tool in understanding the intermittency, and in co
structing a self-consistent picture of fully developed turb
lence statistics.
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